HW RAID vs ZFS: Performance, Compatibility & Best Practices for Proxmox VE on Dell PowerEdge Servers


2 views

When deploying storage on enterprise hardware like Dell PowerEdge R730 with PERC H730, administrators face a fundamental architectural decision:

# Example of checking disk topology in Linux (HBA mode)
lsblk -o NAME,MODEL,SIZE,ROTA,TRAN
hdparm -I /dev/sdX | grep "Nominal Media Rotation Rate"

The PERC H730 controller provides:

  • Battery-backed write cache (BBWC) for write acceleration
  • Strict stripe size alignment (64KB-1MB typically)
  • Hardware XOR acceleration for parity calculations

ZFS implements software-defined storage with:

# Sample ZFS pool creation with ashift=12 (4K alignment)
zpool create -o ashift=12 tank mirror /dev/disk/by-id/ata-DISK1 /dev/disk/by-id/ata-DISK2
zfs set compression=lz4 tank
zfs set atime=off tank

For Proxmox VE deployments:

  1. Cache Contention: HW RAID's BBWC competes with ZFS ARC
  2. Monitoring Visibility: ZFS can't detect underlying disk failures through RAID controller
  3. Performance Tuning: RAID10 stripe size vs ZFS recordsize alignment

Optimal setup for 8x3TB SAS drives:

# H730 in HBA mode (JBOD) with ZFS mirror configuration
zpool create -f -o ashift=12 \
    -O compression=lz4 \
    -O atime=off \
    -O recordsize=128k \
    r730pool \
    mirror /dev/disk/by-id/wwn-0x5000c500a1b2c3d1 /dev/disk/by-id/wwn-0x5000c500a1b2c3d2 \
    mirror /dev/disk/by-id/wwn-0x5000c500a1b2c3d3 /dev/disk/by-id/wwn-0x5000c500a1b2c3d4 \
    mirror /dev/disk/by-id/wwn-0x5000c500a1b2c3d5 /dev/disk/by-id/wwn-0x5000c500a1b2c3d6

When mixing technologies:

# Detect write cache status on HW RAID
megacli -LDGetProp -Cache -LAll -aAll

# Monitor ZFS performance
zpool iostat -v 1
arcstat 1

Comparative testing approach:

# FIO test for both configurations
fio --name=randwrite --ioengine=libaio --iodepth=32 \
    --rw=randwrite --bs=128k --direct=1 --size=10G \
    --numjobs=4 --runtime=300 --group_reporting

Hardware RAID (like Dell PERC H730) and ZFS represent fundamentally different approaches to storage management:

// HW RAID characteristics (PERC H730 example)
- Dedicated RAID processor (ARM Cortex-A15)
- Battery-backed cache (512MB-2GB)
- Proprietary metadata format
- Fixed stripe sizes (64KB-1MB typical)

// ZFS architectural features
- Software-defined storage stack
- Copy-on-write transactional model
- End-to-end checksumming (SHA-256)
- Dynamic stripe width (variable block sizes)

For your R730 with 8x3TB SAS drives:

Metric HW RAID10 ZFS Mirror
Sequential Read ~1.8GB/s ~1.6GB/s
4K Random Write ~25K IOPS ~18K IOPS
Rebuild Time 6-8 hours 4-5 hours
ECC Protection Partial (HDD only) Full (RAM-to-disk)

When using PERC H730 with Proxmox VE:

# Optimal H730 configuration for ZFS:
$ storcli /c0 set jbod=on
$ storcli /c0/eall/sall set jbod

# ZFS pool creation example:
$ zpool create -o ashift=12 tank mirror /dev/disk/by-id/scsi-35000c500a1b2e3f1 /dev/disk/by-id/scsi-35000c500a1b2e3f2
$ zfs set compression=lz4 tank
$ zfs set atime=off tank

Consider these incident patterns from production environments:

// HW RAID failure mode (observed in PERC H7xx series)
1. Cache battery fails -> forced write-through mode
2. Metadata corruption -> entire virtual disk unrecoverable
3. Controller failure -> requires identical replacement

// ZFS recovery scenario
$ zpool import -F -f tank  # Force import damaged pool
$ zpool clear tank         # Clear errors
$ zpool scrub tank         # Verify checksums

For maximizing performance in virtualization environments:

# ZFS tuning for Proxmox VMs:
$ zfs set primarycache=metadata tank/vm-100-disk-0
$ zfs set recordsize=8k tank/vm-100-disk-0
$ zfs set logbias=throughput tank/vm-100-disk-0

# LVM on HW RAID optimization:
$ pvcreate --dataalignment 1M /dev/sda
$ vgcreate --physicalextentsize 4M vg_raid /dev/sda
$ lvcreate -L 1T -n lv_vm -i 3 -I 64k vg_raid

Breakdown for enterprise deployment decisions:

  • HW RAID Advantages: Lower CPU overhead (5-8%), Certified support contracts, Boot volume compatibility
  • ZFS Benefits: Instant snapshots (50ms vs 2s), Inline compression (1.5-3x space savings), Cross-platform recovery