When configuring three switches (A, B, C) in series with redundant LAG connections, we create potential broadcast loops. The described scenario where:
Switch A ┬── LAG (2x1GbE) ──→ Switch B
└── LAG (2x1GbE) ──→ Switch C
This forms a triangle topology where STP becomes mandatory. ARP broadcasts will circulate endlessly without loop prevention.
For single-VLAN environments, RSTP (802.1w) is sufficient with these advantages over classic STP:
- Faster convergence (~1-2 seconds vs 30-50 seconds)
- Backward compatible with STP
- Simpler configuration
Example Cisco RSTP configuration:
Switch(config)# spanning-tree mode rapid-pvst
Switch(config)# spanning-tree vlan 2 priority 4096
For multi-VLAN scenarios, MSTP (802.1s) becomes valuable:
Switch(config)# spanning-tree mode mst
Switch(config)# spanning-tree mst configuration
Switch(config-mst)# instance 1 vlan 2,10
Switch(config-mst)# instance 2 vlan 20,30
Switch(config-mst)# revision 1
While LACP (802.3ad) provides load balancing, it doesn't replace STP:
- LACP manages member links within a single LAG group
- STP manages the logical paths between network devices
Sample LACP configuration for Cisco/Juniper:
# Cisco
interface Port-channel1
channel-group 1 mode active
!
interface Gig1/0/1
channel-group 1 mode active
# Juniper
set interfaces ae1 aggregated-ether-options lacp active
set interfaces ge-0/0/1 ether-options 802.3ad ae1
MC-LAG (like Cisco vPC or Juniper MC-LAG) requires:
# Cisco vPC example
vpc domain 1
peer-keepalive destination 192.168.1.2
!
interface port-channel1
vpc 1
Key limitations:
- Requires identical switch models in most implementations
- Needs dedicated interswitch links for synchronization
- Adds complexity to troubleshooting
- Enable RSTP/MSTP globally
- Configure LACP on all physical interfaces
- Set appropriate STP priorities (lower = root bridge)
- Verify with show commands:
show spanning-tree mst
show lacp neighbor
show etherchannel summary
For monitoring, implement these SNMP OIDs:
1.3.6.1.2.1.17.2.5 (STP root port)
1.3.6.1.2.1.10.7.2.1.1 (LACP partner sys ID)
When dealing with three interconnected switches (Switch A ↔ Switch B ↔ Switch C) with redundant LAG groups, we create potential broadcast storms. Consider this ARP scenario:
# Example ARP loop path visualization
Switch B → Port 1/2 (LAG) → Switch A
Switch B → Port 3/4 → Switch C → Port 23/24 (LAG) → Switch A
Protocol | Convergence Time | VLAN Handling | Best For |
---|---|---|---|
STP (802.1D) | 30-50 seconds | Single instance | Legacy networks |
RSTP (802.1w) | 1-2 seconds | Single instance | Modern deployments |
MSTP (802.1s) | 1-2 seconds | Multiple instances | Multi-VLAN environments |
Here's sample RSTP configuration for Cisco-like syntax:
# Enable RSTP globally
spanning-tree mode rapid-pvst
# Configure LAG groups
interface Port-channel1
switchport mode trunk
channel-group 1 mode active
spanning-tree portfast network
# Verify topology
show spanning-tree vlan 2
show etherchannel summary
Multi-chassis LAG (MLAG/vPC/VLT) provides cross-switch bundling but requires:
- Special hardware support
- Control plane synchronization
- Identical configuration on peer switches
Myth: LACP eliminates STP requirements
Reality: LACP only manages member links within a LAG group. It cannot:
- Prevent loops between different LAG groups
- Handle broadcast/multicast floods
- Manage alternate path redundancy
For your 3-switch topology with VLAN 2:
# Recommended baseline
1. Enable RSTP on all switches
2. Configure consistent LACP settings:
- System priority: 32768 (default)
- Port priority: 128
3. Designate root bridge:
spanning-tree vlan 2 root primary
4. Implement BPDU guard:
spanning-tree portfast bpduguard default
When adding VLAN 3, transition to MSTP:
spanning-tree mode mst
spanning-tree mst configuration
name REGION1
revision 1
instance 1 vlan 2
instance 2 vlan 3
Essential troubleshooting snippets:
# Check STP port roles
show spanning-tree brief
# Verify LACP neighbor status
show lacp neighbor
# Test failover (on Cisco)
test spanning-tree vlan 2 port role