When planning database capacity, we follow a systematic approach:
1. Scenario Setup → 2. Monitoring Implementation →
3. Traffic Generation → 4. Performance Analysis →
5. Optimization → 6. Iterative Testing
Essential database performance indicators include:
- Query execution time (P99, P95, median)
- Transactions per second (TPS)
- Connection pool utilization
- Cache hit ratio
- Disk I/O throughput
- CPU and memory consumption
Popular tools for database stress testing:
1. Sysbench (MySQL/PostgreSQL)
sysbench oltp_read_write \
--db-driver=mysql \
--mysql-host=127.0.0.1 \
--mysql-port=3306 \
--mysql-user=sbtest \
--mysql-password=password \
--mysql-db=sbtest \
--tables=10 \
--table-size=100000 \
--threads=32 \
--time=300 \
--report-interval=10 \
run
2. JMeter JDBC Testing
// JMeter JDBC Connection Configuration
jdbc:mysql://localhost:3306/testdb
username=testuser
password=testpass
Validation Query: SELECT 1
Pool Configuration:
Max Connections: 50
Timeout: 30000 ms
Rule of Thumb Calculations
For relational databases:
Required Capacity = (Current Peak Usage) ×
(Growth Factor) ×
(Safety Margin)
Where:
Growth Factor = 1.5 (typical annual growth)
Safety Margin = 1.2 (20% buffer)
Cloud Database Scaling
AWS RDS Auto Scaling example:
aws rds modify-db-instance \
--db-instance-identifier mydbinstance \
--max-allocated-storage 2000 \
--apply-immediately
Common MySQL performance bottlenecks and fixes:
# Slow query optimization
EXPLAIN ANALYZE
SELECT * FROM orders
WHERE customer_id = 12345
ORDER BY order_date DESC;
# Solution
CREATE INDEX idx_customer_order_date
ON orders(customer_id, order_date DESC);
Prometheus configuration for MySQL monitoring:
# mysqld_exporter config
[client]
user=exporter_user
password=securepassword
# Prometheus scrape config
scrape_configs:
- job_name: 'mysql'
static_configs:
- targets: ['mysql-exporter:9104']
Adopt a CI/CD approach for capacity planning:
while (performance_requirements_not_met) {
run_load_test();
analyze_bottlenecks();
implement_optimizations();
verify_improvements();
}
When scaling database systems, two critical questions emerge:
- How much load can my current database infrastructure handle?
- When will I need to scale up/out based on projected growth?
Popular open-source tools:
# Example using sysbench for MySQL
sysbench --db-driver=mysql --mysql-host=127.0.0.1 \
--mysql-port=3306 --mysql-user=root \
--mysql-password= --mysql-db=test \
--tables=10 --table-size=100000 \
oltp_read_write --threads=8 --time=300 \
--report-interval=10 run
Category | Specific Metrics |
---|---|
Performance | Query latency, Throughput (QPS), Connection wait time |
Resource | CPU usage, Memory pressure, Disk I/O, Network throughput |
Database-specific | Lock contention, Cache hit ratio, Replication lag |
Three-phase approach:
- Baseline Establishment: Measure current performance under normal load
- Stress Testing: Push beyond expected peak loads (120-150% of projected maximum)
- Failure Testing: Simulate node failures and network partitions
For cloud-native databases like AWS RDS or Azure SQL:
# AWS CloudWatch metrics example
aws cloudwatch get-metric-statistics \
--namespace AWS/RDS \
--metric-name CPUUtilization \
--dimensions Name=DBInstanceIdentifier,Value=my-db-instance \
--start-time 2023-01-01T00:00:00Z \
--end-time 2023-01-02T00:00:00Z \
--period 3600 \
--statistics Average
PostgreSQL performance tuning test:
-- Create test table
CREATE TABLE load_test (
id SERIAL PRIMARY KEY,
data JSONB,
created_at TIMESTAMP DEFAULT NOW()
);
-- Generate test data
INSERT INTO load_test (data)
SELECT jsonb_build_object(
'field1', md5(random()::text),
'field2', floor(random() * 1000)
)
FROM generate_series(1, 1000000);
- Test with production-like data volumes and distributions
- Include representative query mixes (reads vs writes)
- Simulate connection churn and connection pooling effects
- Test failover scenarios and recovery times