When planning for a website expecting 500,000 unique visitors generating 2 million pageviews daily, with each page executing ~50 queries, you're looking at:
- 100 million queries/day
- 4 million queries/hour
- 70,000 queries/minute
- 1,200 queries/second (average)
- 3,000 queries/second (peak)
A well-tuned MySQL server on modern hardware can typically handle:
- Basic configuration: 500-1,000 QPS
- Optimized single server: 2,000-5,000 QPS
- Highly-tuned with SSD/NVMe: 10,000-30,000 QPS
For 3,000 QPS peaks, consider these approaches:
# Example my.cnf optimization for high QPS
[mysqld]
innodb_buffer_pool_size = 12G # 70-80% of RAM
innodb_log_file_size = 2G
innodb_flush_method = O_DIRECT
innodb_read_io_threads = 16
innodb_write_io_threads = 16
query_cache_type = 0
table_open_cache = 4000
For 50,000 QPS, you'll need a distributed architecture:
# Python example for read/write splitting
import mysql.connector
from mysql.connector import pooling
# Master for writes
write_pool = pooling.MySQLConnectionPool(
pool_name="master_pool",
pool_size=10,
host="master.db.example.com",
user="app_user",
password="secure_password",
database="app_db"
)
# Read replicas pool
read_pool = pooling.MySQLConnectionPool(
pool_name="read_pool",
pool_size=30,
host="replica.db.example.com",
user="app_user",
password="secure_password",
database="app_db"
)
- Dedicated database servers (not shared)
- 64GB+ RAM for buffer pools
- NVMe SSDs for storage
- High-performance network (10Gbps+)
Consider these complementary technologies:
// Redis caching example
const redis = require('redis');
const client = redis.createClient();
async function getCachedData(key) {
const cached = await client.get(key);
if (cached) return JSON.parse(cached);
// Fallback to database
const data = await fetchFromDatabase(key);
client.setex(key, 3600, JSON.stringify(data));
return data;
}
When planning for a website expecting 500,000 unique visitors generating 2 million pageviews daily, we face a database throughput challenge. Each page makes ~50 queries, resulting in:
- 100M queries/day
- 4M queries/hour
- 70K queries/minute
- 1,200 queries/second (average)
- 3,000 queries/second (peak)
Modern MySQL servers can typically handle:
- Basic server: 500-1,000 QPS
- Optimized server: 2,000-5,000 QPS
- High-end server: 10,000+ QPS
To achieve 3,000 QPS consistently:
Vertical Scaling
A single high-performance server configuration:
# Example my.cnf optimization for high throughput
[mysqld]
innodb_buffer_pool_size = 12G # 70-80% of RAM
innodb_log_file_size = 2G
innodb_flush_log_at_trx_commit = 2
innodb_flush_method = O_DIRECT
query_cache_type = 0
table_open_cache = 4000
Horizontal Scaling
For better redundancy and scalability:
# Example read/write splitting configuration
$config = [
'write' => [
'host' => 'master.db.example.com'
],
'read' => [
'host1' => 'replica1.db.example.com',
'host2' => 'replica2.db.example.com',
'host3' => 'replica3.db.example.com'
]
];
Reduce database load with Redis caching:
// PHP example using Redis cache
$redis = new Redis();
$redis->connect('127.0.0.1', 6379);
$cacheKey = "page_data:$pageId";
if (!$data = $redis->get($cacheKey)) {
$data = $db->query("SELECT * FROM pages WHERE id = ?", [$pageId]);
$redis->setex($cacheKey, 3600, json_encode($data));
}
Essential optimizations for high throughput:
- Add proper indexes on frequently queried columns
- Use EXPLAIN to analyze query execution plans
- Implement prepared statements
- Batch operations when possible
Key metrics to watch:
# MySQL performance monitoring queries
SHOW GLOBAL STATUS LIKE 'Questions';
SHOW ENGINE INNODB STATUS;
SHOW PROCESSLIST;
For your scenario, I recommend starting with:
- 1 powerful master server (16+ cores, 32GB+ RAM, NVMe storage)
- 2-3 read replicas with similar specs
- Redis cache cluster
- Connection pooling (50-100 connections per server)