LSI's CacheCade Pro 2.0 implements a hybrid caching architecture where SSDs supplement rather than replace the controller's NVRAM. The onboard NVRAM still plays critical roles:
// Pseudo-configuration showing cache hierarchy
RAID_Controller {
NVRAM: 2GB (Battery-backed)
Functions:
- Write journaling
- Transaction consistency
- Emergency write buffer
CacheCade_SSD: 400GB Intel S3700
Functions:
- Read cache (adaptive)
- Write cache (optional)
- Hot data tiering
}
While LSI allows consumer SSDs, enterprise workloads demand careful consideration:
# SSD endurance calculator for CacheCade
def calculate_endurance(ssd_tbw, daily_writes):
days_to_wearout = ssd_tbw * 1000 / (daily_writes * 365)
return days_to_wearout
# Example with 1TB DWPD drive:
print(calculate_endurance(10, 5)) # 5.48 years at 5TB/day
print(calculate_endurance(3, 10)) # 0.82 years at 10TB/day
The write path follows this sequence for data protection:
- Host write → Controller NVRAM (immediate ack)
- NVRAM → CacheCade SSD (async, 1-5 sec)
- SSD → HDD array (background)
CacheCade uses a modified LRU algorithm with these enhancements:
// Simplified algorithm representation
class CacheCadeAlgorithm {
constructor() {
this.hotBlocks = new Map();
this.candidateBlocks = new Set();
}
trackAccess(lba) {
if (this.hotBlocks.has(lba)) {
// Promote to MRU position
this.hotBlocks.delete(lba);
this.hotBlocks.set(lba, Date.now());
} else if (++accessCount[lba] > THRESHOLD) {
this.candidateBlocks.add(lba);
}
}
promoteCandidates() {
this.candidateBlocks.forEach(lba => {
if (this.hotBlocks.size < MAX_CACHE_SIZE) {
this.hotBlocks.set(lba, Date.now());
}
});
}
}
Key metrics accessible via MegaRAID CLI:
# Sample monitoring commands
$ storcli /c0 show all | grep -i cache
CacheCade Hits: 2345678 (78.2%)
CacheCade Misses: 654321
SSD Wear Indicator: 15%
$ storcli /c0/v0 show ccstats
Read Acceleration: Enabled (92% hit rate)
Write Acceleration: Enabled (64% hit rate)
Dirty Cache Blocks: 1245
Optimal configuration for MySQL workloads:
# Recommended CacheCade 2.0 setup
RAID_Level = 10
SSD_Config = {
"Model": "Intel DC S3700",
"Capacity": "800GB",
"RAID1_Mirror": True,
"Read_Policy": "Adaptive",
"Write_Policy": "WriteThrough",
"SSD_Reserve": "15%" # For overprovisioning
}
# Tuning parameters
echo "256" > /sys/block/cciss/c0d0/queue/nr_requests
echo "1024" > /sys/block/cciss/c0d0/queue/max_sectors_kb
Feature | CacheCade 2.0 | ZFS L2ARC | HP SmartCache |
---|---|---|---|
Write Caching | Yes (optional) | No | Yes |
Metadata Efficiency | 8KB granularity | 128KB default | 64KB block |
Endurance Mgmt | Basic wear-leveling | None | Advanced |
Cache Coherency | Controller-managed | ZFS-managed | Battery-backed |
For enterprise deployments, supplement CacheCade with these monitoring tools:
# Nagios plugin for CacheCade health
define command {
command_name check_cachecade
command_line /usr/lib64/nagios/plugins/check_storcli -C $ARG1$ -W $ARG2$ -c $ARG3$
}
LSI's CacheCade Pro 2.0 technology fundamentally transforms how SSDs interact with traditional RAID arrays. The system creates a two-layer caching architecture:
// Simplified architectural overview
SSD Cache Layer (CacheCade) → RAID Controller Cache (NVRAM) → HDD RAID Array
While CacheCade SSDs handle bulk caching operations, the controller's NVRAM serves critical functions:
- Power-loss protection for in-flight writes
- Ultra-low latency metadata operations
- Write coalescing before SSD commitment
Testing shows consumer SSDs can perform surprisingly well in CacheCade deployments:
// Sample write endurance calculation
const ssdCapacity = 480; // GB
const writeEndurance = 3000; // P/E cycles
const dailyWrites = 5; // Drive writes per day
const lifespanYears = (ssdCapacity * writeEndurance) / (ssdCapacity * dailyWrites * 365);
// Returns ~1.64 years for this configuration
CacheCade employs adaptive algorithms that differ from ZFS ARC/L2ARC:
- Frequency-based promotion (hot data tracking)
- Sequential read bypass (avoids cache pollution)
- Write-back with periodic destaging
The MegaCLI utility provides critical performance metrics:
# Check cache hit ratio
megacli -LDInfo -Lall -aALL | grep "Cache Hit Ratio"
# View SSD wear indicators
megacli -PDList -aALL | grep -E "Media Error|Predictive Failure"
# Force cache flush (benchmarking)
megacli -CacheCade -Flush -L0 -a0
This Python snippet simulates cache behavior analysis:
import pandas as pd
import numpy as np
def analyze_cache_patterns(log_file):
data = pd.read_csv(log_file)
read_hits = data['cache_hits'].sum()
total_reads = data['total_ops'].sum()
hit_ratio = (read_hits / total_reads) * 100
# Identify working set size
working_set = data['block_size'].unique().size * 512 / (1024**2) # MB
return {'hit_ratio': hit_ratio, 'working_set_mb': working_set}
Testing shows significant improvements in specific workloads:
Workload | HDD Only | CacheCade | Improvement |
---|---|---|---|
Random 4K Read | 1,200 IOPS | 28,000 IOPS | 23x |
OLTP Pattern | 450 IOPS | 9,800 IOPS | 21x |
Sequential 1M | 210 MB/s | 225 MB/s | 7% |
Optimal CacheCade settings vary by workload:
# For database workloads (70% read / 30% write)
megacli -CacheCade -Modify -L0 -Imprint 70 -a0
# For write-heavy applications
megacli -CacheCade -Modify -L0 -WB -Imprint 30 -a0
# View current policy
megacli -CacheCade -GetPolicy -L0 -a0
CacheCade maintains data integrity through:
- Atomic write operations
- Background mirror rebuilding
- Automatic failback to HDD array