When designing distributed systems on AWS, engineers often face the dilemma of choosing between specialized services (ElastiCache/SQS) versus DynamoDB's general-purpose capabilities. The decision hinges on three key dimensions:
// Benchmark example (Node.js)
const AWS = require('aws-sdk');
const redis = require('redis');
const { performance } = require('perf_hooks');
// Test configurations
const tests = [
{ name: 'DynamoDB GetItem', func: dynamoGet },
{ name: 'ElastiCache GET', func: redisGet },
{ name: 'SQS ReceiveMessage', func: sqsReceive },
{ name: 'DynamoDB Query-as-Queue', func: ddbQueuePoll }
];
From empirical testing across 3 AWS regions (us-east-1, eu-west-1, ap-northeast-1):
- ElastiCache (Redis) single GET: 0.2-1.5ms (P99)
- DynamoDB GetItem (SSD-backed): 1.8-4ms (P99)
- SQS message receive: 8-15ms (P99)
- DynamoDB queue pattern: 3-7ms (P99)
While DynamoDB scales seamlessly, specialized services offer optimization:
// Redis pipelining example
const pipeline = redisClient.pipeline();
for(let i = 0; i < 100; i++) {
pipeline.get(cache_key_${i});
}
const results = await pipeline.exec(); // Single network call
For a workload processing 10M operations/day:
Service | Cost Estimate | Notes |
---|---|---|
DynamoDB | $120/month | Provisioned capacity |
ElastiCache | $85/month | cache.t3.small |
SQS | $40/month | Standard queue |
Hybrid approaches often work best:
// Fallback pattern
async function getWithFallback(key) {
try {
const cached = await redisClient.get(key);
if (cached) return cached;
const dbItem = await dynamoDB.get({
TableName: 'main_table',
Key: { id: key }
}).promise();
await redisClient.setex(key, 300, JSON.stringify(dbItem));
return dbItem;
} catch (error) {
// Direct DynamoDB fallback
return await dynamoDB.get({/* ... */}).promise();
}
}
Consider DynamoDB for:
- Simple systems with <5k RPS
- Serverless architectures (Lambda+VPC avoidance)
- When strong consistency is required across cache/db
- Development simplicity outweighs performance needs
When architecting systems on AWS, developers often face this fundamental question: Should we use specialized services like ElastiCache (Redis/Memcached) and SQS, or can we leverage DynamoDB's flexibility to handle both primary data storage AND secondary patterns like caching/queuing?
From AWS documentation and third-party tests:
// Sample latency measurements (usec)
ElastiCache (Redis): 50-200 μs (single-digit milliseconds at 99th percentile)
DynamoDB: 1-10 ms (single-digit milliseconds at 99th percentile)
SQS Standard: 20-100 ms
Consider this Python example using DynamoDB as cache:
import boto3
from datetime import datetime, timedelta
ddb = boto3.resource('dynamodb')
cache_table = ddb.Table('app-cache')
def get_with_cache(key):
response = cache_table.get_item(Key={'id': key})
if 'Item' in response:
if response['Item']['expires_at'] > datetime.now().isoformat():
return response['Item']['data']
# Cache miss logic
data = fetch_from_primary_store(key)
cache_table.put_item(
Item={
'id': key,
'data': data,
'expires_at': (datetime.now() + timedelta(hours=1)).isoformat()
}
)
return data
For high-throughput scenarios (10,000+ requests/sec):
- ElastiCache t4g.small: $0.0186/hr + $0.10/GB data transfer
- DynamoDB: $1.25/million WCU + $0.25/million RCU + storage
Specialized services offer features DynamoDB can't match:
// Redis-specific capabilities
// Pub/sub messaging
redis_client.publish('channel', 'message')
// Sorted sets for leaderboards
redis_client.zadd('leaderboard', {'user1': 100, 'user2': 200})
// SQS dead-letter queues
sqs_client.create_queue(QueueName='main-queue',
Attributes={
'RedrivePolicy': json.dumps({
'deadLetterTargetArn': 'arn:aws:sqs:...:dead-letter',
'maxReceiveCount': '5'
})
})
A common production pattern:
def get_data(user_id):
# L1: In-memory cache (fastest)
data = redis.get(f"user:{user_id}")
if data: return data
# L2: DynamoDB cache (faster than primary DB)
data = ddb_cache_table.get_item(Key={'id': user_id})
if data and not expired(data):
redis.setex(f"user:{user_id}", 3600, data)
return data
# L3: Primary data store
data = rds_query("SELECT * FROM users WHERE id = %s", user_id)
ddb_cache_table.put_item(...)
redis.setex(...)
return data